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Mechanical systems with a finite number of degrees of freedom, subject to one or more unilateral geometric constraints, are 
considered. Apart from the main forms of motion--flying, supported motion and non-degenerate collisions---such systems also 
show more complex, discontinuous motions, including infinitely many impacts in any neighbourhood of the starting time. These 
motions are possible not only when no continuous motions exist, but also together with continuous motions [1]. It is proved that, 
in the case of ideal constraints, if the reactions of the constraints at the starting time are non-zero, there cannot be any discontinuous 
motion. In systems with dry friction there is yet another type of discontinuity, namely, tangential impact at zero approach velocity. 
Sufficient conditions for continuity of the motion are derived for this case also. The conditions are verified with examples that 
use the usual models of impact. © 1998 Elsevier Science Ltd. All rights reserved. 

1. F O R M U L A T I O N  OF THE P R O B L E M  

The equations of motion of a mechanical system in Lagrangian form are 

~T c3T 
pi--~qi =Qi , pi =~q i (i=l,...n) (1.1) 

where T is the kinetic energy, set up taking into account the existing ideal bilateral constraints and Qi 
is the generalized force corresponding to the generalized coordinate qi. Under the usual conditions on 
the functions Qi and T (e.g. continuous differentiability in some domain), the Cauchy problem for system 
(1.1) is well posed and the solutions q(t) are twice differentiable. Consequently, the phase curves are 
continuous. 

When the system is subject to a unilateral constraint ql I> 0, Eqs (1.1) only hold inside the domain 
of possible motion ql > 0, while on the boundaryql = 0 there are two possible types of motion, described 
by different equations. In the first type--supported motion--the constraint remains active over a certain 
time interval, and the reaction of the constraint is added to the forces acting on the system 

~T 
Pi - i3qm = Qi + Ri (1.2) 

System (1.2) contains a redundant number of unknowns, and it is therefore necessary to establish rules 
for solving it. One usually proceeds as follows. First, relying on physical considerations, one specifies 
some friction law, so that R2 . . . . .  Rn can be expressed in terms of R1. One then eliminates the generalized 
accelerations q2 . . . .  ,/in so that in the end (for the classical friction laws) a single linear equation remains 
in the two variables/t i and R1. To eliminate a redundant unknown quantity one uses the so-called 
complementarity condition [2]. The result is a system of the form 

ql = A0 + Ax Ri (1.3) 

qt >~ 0, R I t> 0, ~IRI ~- 0 (1.4) 

The coefficientsA 0 andA I in Eq. (1.3) generally depend on the phase variables and on time. 
If the unilateral constraint is ideal, thenAt > 0 and system (1.3), (1.4) has a unique solution. If there 

is dry (Coulomb) friction, A1 may also take negative values; in that case, depending on the sign of A0, 
Eq. (1.3) either has several solutions or has no solutions compatible with (1.4). These situations are 
conventionally known as the Painlev6 paradoxes [3]. 
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The specific feature of impacts is the discontinuous nature of the phase curves (q(t),/l(t)). Impacts 
take place at those times for which ql = 0, ql < 0 and are described by the equations 

p;- -p~- = li(q,q) ( i=1  ..... n) (1.5) 

where I is a vector-valued function describing the velocity jumps (I1 ~> 0, (]it" t> 0), and the minus and 
plus superscripts correspond to the beginning and end of the impact. 

The form of the function I(q, q) depends on the physical properties of the impacting solids; it is 
important that in any case the kinetic energy will not increase on impact. 

We now define a solution of the equations of motion in a system with a unilateral constraint, taking 
into account the possibility of weakening the constraint, of a supported phase and of impacts. 

Definition. A continuous vector-valued function q(t) will be called a solution of system (1.1), (1.2), 
(1.5), if the following conditions are satisfied: 

1. at times when ql > 0, the function q(t) is twice differentiable and satisfies system (1.1); 
2. at every instant of time for which ql = 0, one-sided derivatives/l(t - 0) exist and equalities (1.5) 

hold; 
3. if ql = 0, ql = 0 at some instant of time, then ci(t) exists and conditions (1.4) are satisfied. 

Remark. Moreau [4] imposes an additional condition on the solutions: the generalized velocity/l(t) is of bounded 
variation in any bounded time interval. We will show that this property of mechanical systems follows from energy 
considerations. Indeed, if the variation were unbounded, this would mean that the sum of normal components of 
the impact impulses were unbounded. Hence the quantitypl would also be unbounded and, consequently, the kinetic 
energy of the system also. Such behaviour of the system over a finite time interval would imply the existence of 
an external source of energy of infinitely large capacity. 

The primary problem of the theory of systems with non-restoring constraints is to determine the conditions for 
the existence and uniqueness of solutions and to determine how they depend on the initial data and parameters. 
Up to the present, a variety of results have been obtained in various special cases. Most attention has been paid 
to the case of an ideal constraint (that is, R, = O, RX = 0 (3" = 2 . . . . .  n)) in Eqs (1.2) and (1.5)) with impacts described 
in accordance with the Newton hypothes(s by the formula 

c)~ = - eq [ ,  e e (0,1] (1.6) 

with a constant coefficient of restitution e. 
The existence of a solution with given initial data has been proved [5]. The solution may be non-differentiable 

in any neighbourhood of the starting time to, owing to the presence of impacts at t = tk (k = 1, 2 . . . .  ), where the 
sequence {tk} decreases monotonically to t o [1]. In the example constructed in [1] such an infinite-impact solution 
exists, apart from the impact-free solution for which ql --- 0. In the billiard system considered in [6] there are no 
impact-free solutions, though at the starting time ql = 0, Cll = 0. 

Sufficient conditions for uniqueness in a billiard-type system were obtained in [7, 8]: the billiard boundary either 
has strictly negative Gauss curvature or is a level curve of a real-analytic function. 

The aim of this paper  is to derive the conditions for the solution to be unique in systems with one 
or more (not necessarily ideal) constraints. 

If the system has a continuously differentiable solution for certain initial data, that solution is unique 
if and only if there are no impact interactions at t > t 0. 

2. T H E  CASE OF AN I D E A L  U N I L A T E R A L  C O N S T R A I N T  

We will first assume that the system is subject to an ideal unilateral constraint, which corresponds to 
contact of bodies with convex smooth surfaces without edges (in which case ql is the distance between 
the bodies). The kinetic energy is a quadratic form in the generalized velocities (if there are linear terms, 
the terms generated by them in the equations of motion (1.1) may be classed as generalized forces). 
The coefficients of this form, as well as the functions ai(t ,  q, / i ) ,  are assumed to be continuously 
differentiable in the domain of possible motions. 

One of the most popular models of the theory of vibrating-impact systems is a rigid body moving on 
a massive base which itself is moving in accordance with a known law. In that case Eqs (1.1) and (1.2) 
include the kinetic energy of relative motion, and the generalized forces include the forces of inertia. 

By virtue of the equations Rz = . . .  = Rn = 0,/2 = . . .  = In -= 0 one can derive several simple relations 
describing the impact. It follows from (1.5) that 
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p~" = p ;  ( j  = 2 ..... n) (2.1) 

Let us express the kinetic energy in terms of the generalized velocity ql and generalized momenta 
. Fairly easy algebraic arguments show (see [9]) that it splits into a sum of two positive-definite quadratic 
rms, the first of which depends only on ql and the second only onpj (the coefficients may depend on 

the coordinates) 

r = To(ql) + T'(p2 ..... Pn) (2.2) 

In view of (2.1), the second term in (2.2) remains unchanged on impact. Consequently, To is a non- 
increasing quantity, or, equivalently 

To obtain a dosed system of equations for the impact we must add to (2.1) a relation of the form 

~t~" = f (q ,  ql-, P2 ..... Pn) (2.4) 

which is compatible with (2.3) (a special case of such a law is (1.6)). 
Let us assume that at the starting time ql(t0) > 0 or ql(to) = 0, ql(t0) > 0. Then, at times sufficiently 

close to the starting time, the solution lies in the domain ql > 0; it will then be described by a system 
of ordinary differential equations (1.1), for which the properties of existence and uniqueness are known. 
The case ql(t0) = 0, ql(t0) < 0 corresponds to impact: after the quantities q(t o + d?) have been calculated 
by using (2.1) and (2.4), it reduces to the previous case or (in plastic collision) to that considered below. 

The greatest difficulties are encountered in analysing the solution under the conditions ql(to) = O, 
ql(t0) = 0. We will prove the following proposition. 

Theorem 1. If  the quantityA0 in (1.3) is negative at t = to, then a number x > 0 exists such that system 
(1.1), (1.2), (1.5) has a unique solution in the interval (to, to + x). For this solution the constraint remains 
active: ql(t)  - O. 

Proof. Consider the function 

L = ~ / 2q? - Aoq I (2.5) 

By assumption, A0 is negative in some neighbourhood of the initial point in the extended phase 
space. Consequently, the function L is non-negative and vanishes if and only if ql = 0, ql = 0. 
Because of inequality (2.3), this function does not increase on impact; in the domain ql > 0 its total 
derivative, evaluated along trajectories of (1.1), admits of the following estimate (using the inequality 
L / > 0 )  

dL dA o <~ _1..~ ~--~L (2.6) 
= - q l  dt A o dt l 

For sufficiently small values of x, the right-hand side of (2.6) does not exceed CIL, where C1 is a 
constant. Hence it follows that 

L(t) ~ L( to)explC 1 (t - to) } 

and, due to the initial conditions, we conclude that L( t )  =-- 0 ~ q(t) - 0. This equality enables us to 
reduce (1.2) to a system of ordinary differential equations of order n - 1, and we conclude, on the basis 
of the general theorems, that the solution is unique. 

The following example will show that the conditions of Theorem 1 are necessary. 

Examp/e. Consider the raising of a load on a lift. In a gravitational field, when the lift accelerates, the load maintains 
contact with the platform by Theorem 1. But if there are no external forces, solutions are also possible reflecting 
the repeated bouncing of a load with increasing amplitude when the lift acceleration increases. We will construct 
one such solution. To do this, we will first specify a (piecewise-linear) law x(t) governing the motion of the load 
and then determine the dependence of the height of the platform on time, S(t) <<- x(t), for which the load may 
move in accordance with that law. 
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Assuming that t o ---- 0, we construct a solution with impacts at times t k = t -~ and post-impact velocities 
X(tk + 0) = 4 ~. In view of the absence of external forces the motion is uniform in intervals between impacts, 
and so 

x(tk)= ~_~ (tj-tj+l)JC(tj+ 1 +0)=1~8 -k, k = !  
j=k 

The law of motion of the platform for which the load moves in this way will be determined from the relations 

S(t k ) = x(t k ), Jc(t k + O) - S(t k) = e(S(t k - :c(t k - 0)) (2.7) 

where the coefficient of restitution e ~ (0, 1) is constant. It is not difficult to construct a twice differentiable function 
S(t) satisfying all of conditions (2.7), whose second derivative is positive for t > 0 (there may be more than one 
such function). To do this, one can use one of the standard interpolation methods. 

3. T H E  CASE OF S E V E R A L  I D E A L  C O N S T R A I N T S  

Theorem 1 can be extended to the case of a system with several ideal unilateral constraints. We will 
construct a local system of coordinates so that these constraints are expressed by the inequalities 
qi >~ 0 (i = 1 , . . . ,  k) .  

Free motion is described by Eqs (1.1). For the other type of mot ion--suppor ted  mot ion-- these  
equations take a form analogous to (1.2): since the constraints are assumed to be ideal, we have 

3T ~r =Qj, (i=I ..... k; j=k+l ..... n) 
Pi ---~iqi = Qi + R(° ,  Pj - ~qj (3.1) 

where R (i) is the reaction o fq i  >>- O. We eliminate the generalized accelerations/tj from the second group 
of Eqs (3.1), and reduce the first group to the form 

= ( 3 . 2 )  

= (ql ..... qk), ~" = F(q, cl, t) = (F I ..... Fk), R = (R <i) ..... R (k)) 

where B is a symmetric positive-definite matrix of order k - - the  matrix of the first of the quadratic forms 
in the decomposition of the kinetic energy as a sum similar to (2.2) 

T = T O (ql ..... tJk) + T* (Pk+l ..... Pn) (3.3) 

Note that there are no products like ?liPj on the right-hand side of formula (3.3). This is not because 
of some special form of the generalized coordinates, but due to the definition (1.1) of the generalized 
momentapj  (see the lemma in [9]). 

In order to determine the generalized accelerations and reactions of the constraints at time t = t o 
from Eqs (3.2), we use the complementarity conditions 

qi >~ O, R (i) >10, qi R(i) = 0  ( i=1 ..... k) (3.4) 

As is well known [10], f o r a n y  positive-definite matrix B and any matrix F the algebraic system 
(3.2), which is linear in q(t0), R, has a unique solution satisfying (3.4). Note that this in itself does not 
guarantee the existence of a continuous solution at t > t 0. 

To describe the impacts at one or more unilateral constraints, we use (1.5). Note that in the general 
case the impact at several constraints is not well-defined, since the functions Ii(q, q) are discontinuous 
on the surfaces qi = 0 [11]. Nevertheless, formulae (2.1) remain true for j = k + 1 . . . . .  n [12]. 
Consequently, the second term in formula (3.3) does not change at impacts, while the first does not 
increase. This is sufficient to prove the following proposition without specifying the laws of  impact. 

Theorem 2. If all the quantities Fi (k = 1 . . . . .  k) in formula (3.2) are negative at t = t 0, then a number 
> 0 exists such that system (1.1), (3.1), (1.5) has a unique solution in the interval (to, to + x). The 

constraints remain active for this solution: qi(t) ~ 0 (i = I . . . . .  k) .  

Proof .  Consider the function 
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(3.5) 

This function is non-negative in some neighbourhood of the origin in the phase space and vanishes on 
the manifold qi = O, qi = 0 (i = l . . . . .  k) .  Its derivative along trajectories of Eqs (3.1) admits of the 
following estimate 

L =  ,A +(Bq,  = 

= ~ (II~l, ~1) + (R,  ~1) - (F, fi) <~ C2L, C2 = const (3.6) 

For impacts at one or several constraints, the first term in formula (3.5), as already noted, does not 
increase, while the second term may change owing to variation of one of the quantities Fi, if the corres- 
ponding constraint is relaxed at the time of impact. Let h~ = I/l(t, + 0) - ~l(t~ - 0) I be the modulus of 
the velocity jump on impact at time t = ts ~ (to, to + "c). Then the sum of the series with general term 
hs does not exceed the variation of the vector-valued function q(t) in the interval (to, to + ~), i.e. it is 
bounded (see the remark in Section 1). 

Since q; = O ( L ) ,  it follows that 

L(~ + 0 ) - L ( ~  -O)<~C3hsL(~  -0) ,  C3=const 

Let (tl, t2) be some interval of impact-free motion. Then, by (3.6) 

Now, using (3.7), we obtain 

L(t  2 - O) <~ L( t  I + 0) exp{C 2 (t 2 - t x) } 

L(t  2 + O) <~ L( t  2 - 0)(I + C3h 2) 

Combining inequalities (3.8) and (3.9) for the whole interval (to, to + x), we obtain 

0 ~ L(t)  <. L( to)exp(C2x) I  ] (1 + C3h.,. ) 
$ 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

That the infinite product in this formula is convergent follows from the above-mentioned convergence 
of the series with general term hs. Since L(to)  = 0, we conclude that L ( t )  ~- O, and that this equality 
remains valid as long as all the functions/7, in Eqs (3.2) are negative. 

4. D I S C O N T I N U O U S  MOTION S IN SYSTEMS WITH F R I C T I O N  

We will now discuss systems with dry friction, confining our attention to the case of one unilateral 
constraint ql i> 0. The relation between the components of the reaction in Eqs (1.2) is described by 
the formulae 

= %(q,q)Ri  (j  = 2 ..... n) (4.1) 

The first feature of systems with friction is the possibility that the quantityA1 in Eq. (1.3) may be 
negative (the situations that arise when this happens are known as the Painlev6 paradoxes). In addition, 
in impact with friction, inequality (2.3) does not follow directly from the laws of dynamics and has to 
be verified specially for the impact model actually adopted. 

A direct extension of Theorem 1 is the following. 

Theorem 3. IfA0 < 0,A1 > 0 in formula (1.3) when t = to, and inequality (2.3) is satisfied for sufficiently 
small values of the approach velocity on impact against the constraint, then a number z > 0 exists such 
that system (1.1), (1.2), (1.4), (1.5) has a unique solution in the interval (to, to + z). The constraint remains 
active for this solution: ql(t) - 0. 

The proof is identical to that of Theorem 1. 
If one of the assumptions of Theorem 3 does not hold, the system may have a discontinuous solution. 

In the case A1 < 0, A0 > 0 (the non-uniqueness paradox), system (1.3) has two solutions compatible 
with (1.4): (1) ql = Ao,  R1 = 0 and (2) ql = 0, R1 = -Ao/A1.  T h e  first of these solutions corresponds to 
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weakening of the unilateral constraint: ql > 0 when t > to. In the second solution the constraint remains 
active; here one obtains an infinite set of distinct solutions for t > to, since cessation of contact may 
occur at any of the times, as long as the non-uniqueness conditions are maintained. The "true" motion 
cannot be chosen out of all possible ones on the basis of the laws of dynamics; resolution of the paradox 
requires the adoption of additional physical assumptions. 

For example, one can assume, following [13], that in the given situation rough bodies behave like 
smooth ones, one may modify the friction law [14], relax the requirement that the bodies in contact be 
absolutely rigid [14, 15] or choose a solution for stability [15]. All these methods lead to the first of the 
two solutions. 

Note that, apart from the two continuous solutions in this case the system also admits of a discon- 
tinuous solution; substituting the initial data into the right-hand side of formula (1.5), we obtain a non- 
zero velocity jump. This possibility is analogous to that considered below. 

In the case A1 < 0, A0 < 0 (the non-existence paradox), system (1.3), (1.4) is inconsistent. Conse- 
quently, the motion is discontinuous. Since the initial approach velocity of the bodies, 01(t0), is zero, 
this type of motion is known as tangential impact or impact-free collision [16]. On completion of the 
impact in the general case ih(to + 0) > 0, and the constraint is weakened. 

Let us assume now that the first two conditions of Theorem 3 are satisfied, i.e. A~ > 0, A0 < 0, but 
inequality (2.3) fails to hold for the given impact law (1.5) in as small a neighbourhood of zero as desired. 
There are several subcases: 

(a) If lim q~i > 0 as q~ ~ -0, the system experiences an impact analogous to tangential impact and 
the constraint is weakened. 

(b) If lira q~i = 0 as q~ ~ -0, and at the same time lira q~/I qil = 0 > 1, then, for the given initial 
data, the system with active constraint admits, besides the continuous solution, of discontinuous solutions. 
Such a motion includes an infinite number of impacts at times tk = Mt -~ + O(0-Z~), where ~. is an arbitrary 
positive number. Thus, we have here infinitely many possible discontinuous solutions. 

(c) If lira q~/IClil = 1 as q-i ~ -0, and the functions Ii (q, q-), describing the dependence of the 
momentum on the initial data of the impact are differentiable, then no discontinuous solution is possible. 
Since in that case inequality (2.3) may fail to hold, this statement may be viewed as a supplement to 
Theorem 3. It can be proved by the methods used above. Under our assumptions, the variation of the 
normal component of the velocity on impact is described by the formula 

10: =10 l+o(  l 
Estimate (2.6) remains valid for the function (2.5) on the flight sections, but at impacts against the 

constraint we have, by (4.2) 

AL = AOIO(L ) (4.3) 

Formula (4.3) is analogous to (3.7), and therefore, reasoning by analogy with the theorem, we conclude 
that L =- 0. 

Thus, discontinuous motions arise in system with friction in two cases: eitherA1 < 0, or lim q~/I qS I> 1. 
Note that the validity of these inequalities in actual systems depends on physical assumptions of different 
kinds: the function Al(q, q) is uniquely defined by the law of friction (4.1), but additional hypotheses 
as to the laws governing the impacts are needed in order to determine the impact impulses in formula 
(1.5). 

Below we consider an example of a system with Coulomb friction, using some of the best-known 
models of impact. 

Example. An inhomogeneous disk on a rough support [14, 17]. Let G be the centre of mass of the disk, C its 
geometric centre, C" the point of contact, r the radius of the disk and let a = I CG I. The position of the disk in 
the vertical plane is defined by the coordinates of the point C in the system OXY (OX being the horizontal axis) 
and the angle ¥ between CG and OX (see Fig. 1). The equations of motion under the action of the force of gravity 
and the reaction of the support may be formulated using the fundamental laws of dynamics 

m(i-a@sin¥)" = Rx, m(~+ a~cosv) '  = -rag + Ry 

mk2i~ = (r + asin ¥)R x -aces~R r 

where m is the mass of  the disk and k its central radius of inertia. 

(4.4) 
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0 

Fig. 1. 

The unilateral constraint is represented by the inequality y 1> r, the components of the reaction are related by 
the equation R x  = -p_Rrsign(x = r¥) ,  where ~t is the coefficient of  sliding friction. We shall assume that at the 
starting time the normal component of the velocity of the point of contact equals zero, while the horizontal 
component is negative. Solution of system (4.4) leads to an equation of type (1.3) with 

A 0 = a ~  2 sin y - g ,  A t = ~2-2 (k 2 +a 2 cos 2 W-  lmcosw(r+as in¥))  (4.5) 

Readers can convince themselves that the coefficients (4.5) may take values of both signs: A0 is positive if the 
centre of mass lies below the geometric centre and the velocity of revolution is sufficiently high; A1 is negative is 
the centre of mass is to the right of the geometric centre and the friction coefficient is sufficiently high, for example: 
V = O, p. > (k 2 + a2)/ar, 

The equations of the classical theory of impact may be obtained from (4.4) by replacing the derivatives of  the 
velocities by increments and ignoring the effect of the gravitational force [12] 

mA( .~-a~s in¥)  = Ix ,  mA(~,+a~tcos~)= IF 

(4.6) 

t o +At 

m k 2 A ~ = ( r + a s i n ¥ ) l x - a c o s ~ l y ,  I =  S Raft 
to 

where I x  and Iy  are the components of the impact impulse and At is the duration of the collision. It  follows from 
Eqs (4.6) that 

mV~( = a l l l  ~ +a12 , mV{, =a121" x +a22 

all = 1 + ( r+as in  ~)2k-2, a12 = - a c o s ~ ( r + a s i n  w)k -2, a22 = l +a2k -2 cos 2 

where [I air II is a positive-definite matrix, the prime denotes differentiation with respect to the variable Z = Iy, 
which is monotone increasing in time and Vx = .~ + r~ ,  V~. = y are the velocity components of the point of contact 
C' .  

We will first consider an impact law in the paradoxical case when A 1 < 0 at the initial instant. For sufficiently 
small values of Z, the quantity Ay will be negative. This indicates the existence of impact not only when there is an 
initial approach velocity (y(t)) < 0), but also in the case discussed above, when~,(to) = 0 (tangential impact). The 
impact consists of several phases. In the first, the disk is "pressed" into the support: V~, < 0, and when that happens 
mV~c = pall  + alz > a12 - allaz2/a12 > 0. After the relative slipping stops, the quantity V x remains equal to zero, 
and then mV~, = a22 - a22/att > 0, i.e. the vertical component of the velocity at the point of contact increases. 

The time at which Vy = 0 corresponds to the greatest deformation of the colliding bodies. If  the impact is 
absolutely inelastic, it ends at this point. Elastic impact also includes a restoration phase. At the end of such an 
impact the disk receives a vertical velocity proportional to the coefficient of restitution of the impact impulse and 
the initial sliding velocity. 

In the regular case A1 > 0, one has V~. > 0 throughout the impact. If  the initial sliding velocity is not zero, it 
does not change direction on impact, provided that the vertical component of  the relative velocity is sufficiently 
small. 

Use of Newton's kinematic coefficient of restitution, Poisson's dynamic coefficient or the Boulanger-Strong energy 
+ 

coefficient leads to the same computational results (see [18]): ql = eq~. Here, according to Theorem 3, we conclude 
that with the given initial data the system admits of no discontinuous motions. With the coefficient of restitution 
proposed in [18], one reaches a different conclusion: apart from continuous motion, the system will also admit of 
impact (subcase a, considered above). 
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We now proceed to impact models based on allowance for deformations in the contact area. Without increasing 
the number of  dimensions of the system, we will assume that the inequality ql < 0 is possible on impact, in which 
case the reaction is given as a certain explicit function R(q, q), different from zero only in the domain ql < 0. 
Retaining a Coulomb law of type (4.1) for the components of the reaction, we obtain a family of models, each of 
which is defined by a function Rl(q, q) and described by a system of ordinary differential equations. In particular, 
Eq. (1.3) takes the following form in the domain ql < 0 

/II = A0 +AIRI (q,/I) (4.7) 

Notwithstanding the quantitative difference between different models (4.7), all such models share certain 
qualitative properties. 

First, tangential impact occurs only when no continuous solutions exist (A0 < 0, A1 < 0). In the case of non- 
uniqueness (A0 > 0,A1 < 0 for t > to), the constraint is weakened after action of a "finite" forceA0. Consequently, 
the paradox is resolved in favour of continuous motion. In this respect these models depart from the classical model. 

Second, if no tangential impact exists, sliding stops and the disks separates from the support. 
Third, in the regular case, for sufficiently small values of the initial approach velocity I tll I, the direction of  sliding 

does not change during impact; by energy arguments, this implies that q~ ~<l q~ I. Consequently, the conditions of 
Theorem 3 are satisfied. 

There are also other models of rough body impact, in which the friction does not obey Coulomb's law (see, e.g. 
[19]). In that case the third condition of Theorem 3 may fail to hold, leading to the existence of discontinuous 
solutions besides continuous ones. 
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